Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Guo-Fang He, ${ }^{\text {a }}$ Xian-Qiang Huang, ${ }^{\text {b }}$ Jian-Min Dou, ${ }^{\text {b }}$ Da-Cheng Li ${ }^{\text {b }}$ and Da-Qi Wang ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Materials Science and Chemical Engineering, Taishan Universitry, Taian 271021, Department of Chemistry, Liaocheng University, Liaocheng 252059, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Liaocheng University, Liaocheng 252059, People's Republic of China

Correspondence e-mail:
hxqiang2005@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.049$
$w R$ factor $=0.141$
Data-to-parameter ratio $=13.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-Phenyl-1,5-di-2-pyridylpentane-1,5-dione

In the title compound, $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$, synthesized by the reaction of benzaldehyde with 2 -acetylpyridine and KOH , the phenyl ring makes dihedral angles of 88.5 (1) and 83.9 (1) ${ }^{\circ}$ with the two pyridine rings. The crystal packing is stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, with an $\mathrm{H} \cdots \mathrm{O}$ distance of $2.47 \AA$, and by van der Waals forces.

Comment

In continuation of our ongoing programme directed towards the development of environmentally benign methods of chemical synthesis (Hajipour et al., 2004, 2005), we have discovered a convenient one-step method for the preparation of 1,5-diketones, starting from fragrant aldehydes and fragrant ketones, in the presence of KOH under solvent-free conditions. Using this method, which can be considered as a a general method for the synthesis of 1,5 -diketones, we obtained the title compound, (I). We present here its crystal structure.

(I)

In (I) (Fig. 1), the bond lengths and angles are normal (Allen et al., 1987). The phenyl ring makes dihedral angles of 88.5 (1) and 83.9 (1) ${ }^{\circ}$ with pyridine rings $\mathrm{N} 1 / \mathrm{C} 6 / \mathrm{C} 8-\mathrm{C} 11$ and $\mathrm{N} 2 / \mathrm{C} 18 / \mathrm{C} 20-23$, respectively. Weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers. The crystal packing (Fig. 2) is further stabilized by van der Waals forces.
Interestingly, the molecular geometry, the topology of the crystal packing and the triclinic unit-cell parameters of (I) are close to those observed for 3-(4-fluorophenyl)pentane-1,5-di2 -pyridyl-1,5-dione (Constable et al., 1998).

Experimental

2-Acetylpyridine ($0.76 \mathrm{~g}, 6.25 \mathrm{mmol}$), freshly distilled benzaldehyde $(0.33 \mathrm{~g}, 3.125 \mathrm{mmol})$ and $\mathrm{KOH}(0.35 \mathrm{~g}, 6.25 \mathrm{mmol})$ were mixed with a glass paddle in an open flask. The resulting mixture was washed with water several times to remove the KOH and recrystallized from ethanol, affording the title compound as a crystalline solid.

Received 13 September 2006
Accepted 21 September 2006

organic papers

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$	$V=860.0(5) \AA^{3}$
$M_{r}=330.37$	$Z=2$
Triclinic, $P \overline{1}$	$D_{x}=1.276 \mathrm{Mg} \mathrm{m}^{-3}$
$a=8.464(3) \AA$	Mo $K \alpha$ radiation
$b=10.484(4) \AA$	$\mu=0.08 \mathrm{~mm}^{-1}$
$c=10.713(4) \AA$	$T=298(2) \mathrm{K}$
$\alpha=94.449(4)^{\circ}$	Block, colourless
$\beta=111.377(4)^{\circ}$	$0.56 \times 0.53 \times 0.48 \mathrm{~mm}$
$\gamma=100.396(4)^{\circ}$	

Data collection

Siemens SMART CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.955, T_{\text {max }}=0.961$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.141$
$S=1.00$
2983 reflections
226 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.077 P)^{2} \\
&+0.1387 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.28 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C23-H23 $\cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.47	$3.289(3)$	147

Symmetry code: (i) $-x+1,-y,-z+2$.
All H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors acknowledge the financial support of the National Natural Science Foundation of Liaocheng Univeristry (grant No. X051040).

Figure 1
The molecular structure of (I), showing the atomic numbering scheme and displacement ellipsoids drawn at the 30% probability level.

Figure 2
The packing of (I), viewed along the b axis. Dashed lines denote $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Constable, E. C., Neuburger, M., Smith, D. R. \& Zehnder, M. (1998). Inorg. Chim. Acta, 275-276, 359-365.
Hajipour, A. R., Kooshki, B. \& Ruoho, A. E. (2005). Tetrahedron Lett. 46, 5503-5506.
Hajipour, A. R., Mirjalili, B. F., Zarei, A., Khazdooz, L. \& Ruoho, A. E. (2004). Tetrahedron Lett. 45, 6607-6609.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

